Linear Algebra
 [KOMS120301] - 2023/2024

13.2 - Types of Linear Transformation

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 13 (November 2023)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of various types of linear transformation among vectors in vector spaces;
2. perform a linear transformation (reflection, projection, rotation, dilation, expansion, shear) on a vector in a vector space.

Basic Matrix Transformations in \mathbb{R}^{2} and \mathbb{R}^{3}

(page 259 of Elementary LA Applications book)

1. Reflection

Reflection operators on \mathbb{R}^{2}

Reflection operators are operators on \mathbb{R}^{2} (or \mathbb{R}^{3}) that maps each point into its symmetric image about a fixed line or a fixed plane that contains the origin.

Operator	Illustration	Images of e_{1} and e_{2}	Standard Matrix
Reflection about the x-axis $T(x, y)=(x,-y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,-1) \end{aligned}$	$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Reflection about the y-axis $T(x, y)=(-x, y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(-1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,1) \end{aligned}$	$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
Reflection about the line $y=x$ $T(x, y)=(y, x)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(0,1) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(1,0) \end{aligned}$	$\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]$

Reflection operators on \mathbb{R}^{3}

Operator	Illustration	Images of $\mathbf{e}_{1}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{3}$	Standard Matrix
Reflection about the $x y$-plane $T(x, y, z)=(x, y,-z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,-1) \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
Reflection about the $x z$-plane $T(x, y, z)=(x,-y, z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,-1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Reflection about the $y z$-plane $T(x, y, z)=(-x, y, z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(-1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

2. Projection

Projection operators on \mathbb{R}^{2}

Projection operators or orthogonal projection operators are matrix operators on \mathbb{R}^{2} (or \mathbb{R}^{3}) that map each point into its orthogonal projection onto a fixed line or plane through the origin.

Operator	Illustration	Images of e_{1} and e_{2}	Standard Matrix
Orthogonal projection onto the x-axis $T(x, y)=(x, 0)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,0) \end{aligned}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
Orthogonal projection onto the y-axis $T(x, y)=(0, y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,1) \end{aligned}$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Projection operators on \mathbb{R}^{3}

Operator	Illustration	Images of $\mathbf{e}_{1}, e_{2}, e_{3}$	Standard Matrix
Orthogonal projection onto the $x y$-plane $T(x, y, z)=(x, y, 0)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,0) \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
Orthogonal projection onto the $x z$-plane $T(x, y, z)=(x, 0, z)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,0,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
Orthogonal projection onto the $y z$-plane $T(x, y, z)=(0, y, z)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(0,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

3. Rotation

Rotation operators for \mathbb{R}^{2}

Rotation operators are matrix operators on \mathbb{R}^{2} or \mathbb{R}^{3} that move points along arcs of circles centered at the origin.

How to find the standard matrix for the rotation operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that moves points counterclockwise about the origin through a positive angle θ ?

$T\left(\mathbf{e}_{1}\right)=T(1,0)=(\cos \theta, \sin \theta)$ and $T\left(\mathbf{e}_{2}\right)=T(0,1)=(-\sin \theta, \cos \theta)$
The standard transformation matrix for T is:

$$
A=\left[T\left(\mathbf{e}_{1}\right) \left\lvert\, T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\right.\right.
$$

Review on "angle"

Conversion from ${ }^{\circ}$ to rad

- $180^{\circ}=1 \pi \mathrm{rad}$
- $1^{\circ}=\frac{\pi}{180} \mathrm{rad}$

Rotation operators for \mathbb{R}^{2} (cont.)

The matrix:

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is called the rotation matrix for \mathbb{R}^{2}.
Let $\mathbf{x}=(x, y) \in \mathbb{R}^{2}$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$ be its image under the rotation. Then:

$$
\mathbf{w}=R_{\theta} \mathbf{x}
$$

with:

$$
\begin{aligned}
& w_{1}=x \cos \theta-y \sin \theta \\
& w_{2}=x \sin \theta+y \cos \theta
\end{aligned}
$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	P		

Example: a rotation operator

Find the image of $\mathbf{x}=(1,1)$ under a rotation of $\pi / 6 \mathrm{rad}\left(=30^{\circ}\right)$ about the origin.

Solution:

We know that: $\sin (\pi / \sigma)=\frac{1}{2}$ and $\cos (\pi / 6)=\frac{\sqrt{3}}{2}$.
By the previous formula:

$$
R_{\pi / 6} \mathbf{x}=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}-1}{2} \\
\frac{1+\sqrt{3}}{2}
\end{array}\right] \approx\left[\begin{array}{l}
0.37 \\
1.37
\end{array}\right]
$$

Rotations in \mathbb{R}^{3}

Rotations in \mathbb{R}^{3} is commonly described as axis of rotation and a unit vector \mathbf{u} along that line.

(a) Angle of rotation

(b) Right-hand rule

Right-hand rule is used to establish a sign for the angle for rotation.

- If the axes are the axis x, y, or z, then take the unit vectors \mathbf{i}, \mathbf{j}, and k respectively.
- An angle of rotation will be positive if it is counterclockwise looking toward the origin along the positive coordinate axis and will be negative if it is clockwise.

Rotations in \mathbb{R}^{3}

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x-axis through an angle θ		$\begin{aligned} & w_{1}=x \\ & w_{2}=y \cos \theta-z \sin \theta \\ & w_{3}=y \sin \theta+z \cos \theta \end{aligned}$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$
Counterclockwise rotation about the positive y-axis through an angle θ		$\begin{aligned} & w_{1}=x \cos \theta+z \sin \theta \\ & w_{2}=y \\ & w_{3}=-x \sin \theta+z \cos \theta \end{aligned}$	$\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
Counterclockwise rotation about the positive z-axis through an angle θ		$\begin{aligned} & w_{1}=x \cos \theta-y \sin \theta \\ & w_{2}=x \sin \theta+y \cos \theta \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

4. Dilation and contraction

Dilation \& contraction

Let $k \in \mathbb{R}, k \geq 0$. The operator:

$$
T(\mathbf{x})=k \mathbf{x}
$$

on \mathbb{R}^{2} or \mathbb{R}^{3} defines the increment or decrement of the length of vector \mathbf{x} by a factor of k.

- If $k>1$, it is called a dilation with factor k;
- If $0 \leq k \leq 1$, it is called a contraction with factor k.

(a) $0 \leq k<1$

(b) $k>1$

Dilation \& contraction on \mathbb{R}^{2}

Operator	Illustration $T(x, y)=(k x, k y)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^{2} $(0 \leq k<1)$			$\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$
Dilation with factor k in R^{2} $(k>1)$			

Dilation \& contraction on \mathbb{R}^{3}

Operator	Illustration $T(x, y, z)=(k x, k y, k z)$	Standard Matrix
Contraction with factor k in R^{3} $(0 \leq k<1)$		$\left[\begin{array}{lll}k & 0 & 0 \\ 0 & k & 0\end{array}\right]$
Dilation with factor k in R^{3} $(k>1)$		[

5. Expansion and compression

Expansion and compression

In a dilation or contraction of \mathbb{R}^{2} or \mathbb{R}^{3}, all coordinates are multiplied by a non-negative factor k.

Now what if only one coordinate is multiplied by k ?

- If $k>1$, it is called the expansion with factor k in the direction of a coordinate axis (x, y, or z);
- If $0 \leq k \leq 1$, it is called compression

Expansion and compression in \mathbb{R}^{2} (in x-direction)

Operator	Illustration $T(x, y)=(k x, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x-direction with factor k in R^{2} $(0 \leq k<1)$			$\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right]$
Expansion in the x-direction with factor k in R^{2} $(k>1)$			

Expansion and compression in \mathbb{R}^{2} (in y-direction)

Operator	Illustration $T(x, y)=(x, k y)$	Effect on the Unit Square	Standard Matrix
Compression in the y-direction with factor k in R^{2} $(0 \leq k<1)$			$\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$
Expansion in the y-direction with factor k in R^{2} $(k>1)$			

6. Shear

Shear

A matrix operator of the form:

$$
T(x, y)=(x+k y, y)
$$

translates a point (x, y) in the $x y$-plane parallel to the x-axis by an amount ky that is proportional to the y-coordinate of the point.

This is called shear in the x-direction by a factor k.
Similarly, a matrix operator:

$$
T(x, y)=(x, y+k x)
$$

is called shear in the y-direction by a factor k.
When $k>0$, then the shear is in the positive direction. When $k<0$, it is in the negative direction.

Shear

Operator	Effect on the Unit Square			Standard Matrix
Shear in the x-direction by a factor k in R^{2} $T(x, y)=(x+k y, y)$	$(0,1)$			

Example

Describe the matrix operator whose standard matrix is as follows:
$A_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
$A_{2}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
$A_{3}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
$A_{4}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Solution:
From the tables on the previous slides, we can see that:

- A_{1} corresponds to a shear in the x-direction by a factor 2 ;
- A_{2} corresponds to a shear in the x-direction by a factor -2 ;
- A_{3} corresponds to a dilation with factor 2 ;
- A_{4} corresponds to an expansion in the x-direction with factor 2 .

Example (cont.)

Describe geometrically the result of the transformation:

A_{2}

A_{3}

A_{4}

Exercise

